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This work aims at the development of a Lagrangian large eddy simulation (LES)
scheme. The scheme is based on the filtered vorticity transport equation and on
modeling the effects of subfilter scale (SFS) velocity and vorticity fluctuations using
a dynamic eddy diffusivity model. The dynamic implementation of the model relies
on multiple filtering in order to determine model coefficients from the resolved
data. The performance of the dynamic SFS model is examined aginigri tests
that are based on direct numerical simulations of forced, homogeneous, isotropic
turbulence. The tests show a fair correlation of the model with SFS convection of
vorticity. In addition, the computed value of the dynamic model coefficient is in good
agreementwith predictions based on enstrophy balances. Finally, the direct numerical
simulation data is used to compare a three-dimensional particle representation of the
model with spectral evaluations. The tests show that when the particle representation
is sufficiently resolved, the Lagrangian model predictions are in good agreement with
spectral results. © 1998 Academic Press

1. INTRODUCTION

Large eddy simulation (LES) generally aims at overcoming the scale disparity of turbt
flow by numerically solving equations which describe the evolution of the large scale
motion. A widespread LES approach is based on spatially filtering the equations of m
[1-3]. Due to the convective nonlinearity of the momentum equations, a stress term ap
in the filtered equations which includes direct contributions from unresolved scales.
unknown stress must be modeled exclusively interms of resolved, large-scale quantitie
is the analogue of the well-known closure problem which affects the Reynolds-aver
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equations of motion. When filtering and spatial differentiation commute, the governi
equations for LES take the form of the original equations, together with a model term. T
effectiveness of LES depends, in particular, on the effectiveness of the model in represer
the impact of unresolved scales.

Most previous applications of LES have been performed using grid-based approximati
of the filtered Navier—Stokes equations. On the other hand, despite recent interestin Eule
vorticity-based formulations (e.g. [4-6]) LES of the vorticity transport equation remail
scarce. However, particle-based, Lagrangian large eddy simulations have been attem
The original efforts towards the development of numerical methods for Lagrangian L
are due to Chorin [7, 8]. These have led, in particular, to the well-known “hairpin-remove
schemes. The latter are motivated by renormalization of the vorticity evolution equatic
which, like spatial filtering, aims at “absorbing” the effect of the smallest lengthscales
constructing “effective” equations of motion. In its basic form, Chorin’s hairpin remov:
scheme essentially consists of a filament-based simulation, together with a local mesl|
distribution algorithm. The redistribution algorithm acts on the geometry of the filaments
removing the smallest scales, which are typically in the form of hairpin vortices. Recen
proposed extensions [9] of the hairpin removal algorithm include the incorporation of ren
malized Biot—Savart interaction which accounts for the removal (renormalization) proce

Hairpin removal schemes have been applied in a variety of conditions, including b
bounded [10] and free shear flows [11]. A similar approach has been recently propc
by Fernandeet al.[12], based on the combination of a vortex filament scheme with a 3
“filament-surgery” algorithm. The surgery is based on identifying “hairpins” (or locall
collapsed regions) with local minima of the energy density along the filament, and loce
removing them by remeshing the filament.

In this paper, an alternative approach to Lagrangian LES is explored. We follow a simi
approach to the grid-based LES in primitive variables and start with the filtered vortic
transport equation. As discussed in Section 2, the filtering operation leads to the defini
of a subfilter scale (SFS) torque which accounts for unresolved velocity and vorticity flt
tuations. A dynamic eddy-diffusivity model is then proposed in order to represent the S
torque which is due to these fluctuations. In fact, Winckelmetnal. [13] have recently
compared nondynamic eddy—viscosity models for the velocity—pressure and the veloc
vorticity formulations of LES and concluded that the latter were potentially more realisti
The primary objective in the present paper is to examine the suitability of a Lagrangian f
mulation of a dynamic eddy diffusivity model. As outlined in Section 3, the Lagrangian fo
mulation is based on a particle representation of the vorticity field. In Section 4 the dynat
eddy diffusivity model is first analyzed usimagpriori tests, based on results of direct numer-
ical simulation (DNS) of forced isotropic turbulence. In Section 5 the DNS data is used
examine a particle representation of the SFS model and of the dynamic model coefficient
restrict our attention ta priori tests of the Lagrangian model; implementation of the particl
scheme will be discussed elsewhere [14]. Major conclusions are summarized in Sectic

2. FORMULATION

2.1. LES of Momentum Equations

In order to clearly outline the present construction, we start with a brief description of L
of the momentum equations in primitive variables. As mentioned in the Introduction, tt
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approach is typically based on solutions of the filtered Navier—Stokes equations [1, 2,
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whereu is the velocity vectott is time, p is density,p is pressurey is the kinematic visco-
sity, F is a body force term, and

Tij =Uiu; — G0 3)

is the subgrid scale (SGS), or subfilter scale stress. Here and in the following, tildes
used to denote spatially filtered quantities. Following [1, 2, 15] filtering is assumed tc
based on a convolution of the form

Gox t) = / Ga(x — XX, t) &3 @)

whereq is the quantity being filtered. We also assume that the “grid fifB"is a homoge-
neous, smooth, and rapidly decaying radial function and that the forceAielcts at large
scales only, i.eF = F.

In order to close the equation system (1)—(2), one needs to provide a model of the unki
SGS stress, or its divergencé’ - r, in terms of the filtered velocity field. A well-known
model for the deviatoric part of the SGS stress is the Smagorinsky eddy viscosity m
[16],

T — (8 /3) Tk = —2v7Sij, (%)
vr = C2A%§|, 6)
where|S| = +/2SmnSmndenotes the modulus of the strain-rate tensor. Typically, the const
Cs is prescribed; “standard” values are around 0.15 [2, 15].
An alternative to prescribing the model const@gtis based on the so-called dynamic
procedure [17], which relies on multiple filtering operations to detern@gdrom the

simulated fields. Thus, an additional filtering operation, called the test filter, is introduc
The test filter, which has width’ > A, is denoted by an overbar and is given by

ux, t) = /GA,(|x—x/|)u(x’,t) d3x. (7)

Applying the combined grid and test filters to the Navier—Stokes equations introduc
stress at scalg’,

Tij =Tu; — G;0;. (8)

The SGS stresses at the two filter levaland A’ are linked by the Germano identity [17],

Lij = Tij —7ij =il —

e}
[

j- )
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Note that Eq. (9) involve& only, so that evaluation df does not require knowledge of the
unfiltered velocityu. Assuming thafl can be modeled in a similar fashionasand that
Cs is locally independent of the width of the test filter, one obtains

C2(2A2%S|ISij — 2A'2I8|S;;) = Til; — Gidj — 8ij /3(Tnlin — Unlin).  (10)

Since all quantities on the right-hand side of Eq. (10) are resolved, dynamic determina
of Cs is possible.

LES using the dynamic Smagorinsky model have been used in various applications (
[18-20]). Of course, other SGS models have been considered for LES; prominent exam
include similarity [21, 22] and hyperviscosity [23] models. In particular, similarity ana
mixed models have been found to reproduce a number of physical features of the ¢
stress (e.g., relationships between small scales and coherent structures [24, 25], res
to rapid straining [26]). The mixed model has also been shown to perform quite well
simulations of various flows (see, e.g., [27-30]). As a first step, in the present work we \
focus only on the dynamic eddy viscosity model and its implementation in a vorticity-bas
LES scheme. Future extensions include the development of dynamic mixed models in
framework.

2.2. Vorticity Formulation of LES

The starting point in the present development of vorticity-based LES is the filtered v
ticity transport equation,

;i . 0®j - b 2~ 3Rij
gt TUigy T PGy TV IVl -5 (D
where
Rij = (witj — &ilj) — Uoj — Gidj) 12)

is the subgrid scale vorticity stress. The vorticity strBsaccounts for the effect of unre-
solved velocityandvorticity fluctuationsR is composed of two parts,

Rij = &jj — @ji, (13)
where
Dij Emj —J)iljlj. (14)

Note that®;j; represents SFS vortex stretching and tilting due to the unresolved moti
while @;; reflects vortex transport by SFS velocity fluctuations. Also note that Eq. (1
immediately shows thd is antisymmetric.

2.2.1. Subfilter scale modelAs for the filtered momentum equations, one must provids
a model for the vorticity stredR in order to close the filtered vorticity transport equation.
Alternatively, one can simply model the divergence of the vorticity sta8s,/9x;, which
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we refer to as the subfilter scale torque. We shall adopt the latter approach and, by an
with the Smagorinsky model, focus on the following eddy diffusivity model [13, 31],

g=-V x (v1V x @), (15)
where
vy = C2A?S| (16)

is the eddy diffusity. Note that by construction the divergence of the SFS torque vanis
identically. Also note that the eddy diffusivity in Eq. (16) is not necessarily identical to t
eddy diffusivity in the Smagorinsky model, Eq. (6); the model const@anendC; are used
to distinguish between the two quantities. For isotropic turbulence the model coef@igcien
may be analytically estimated, as outlined in Appendix A. The estimated @alee0.12
is close to, but somewhat smaller than the standard Smagorinsky cabstar.15.

It is also interesting to point out that the SFS torque can be alternatively expressed

9 3@\ vt 0d;
_ _ ovT 0wy 17
g 3Xj <UT3XJ'> 3Xj X ( )

Thus,g is expressed as the sum of a gradient-diffusion term and an additional term w
corresponds to the scalar product of the gradient of the eddy diffusivity with the transy
of the vorticity gradient. The second term can be thought of as a correction term th:
needed to render the SFS torque divergence-free.

2.2.2. Dynamic implementationAs discussed in Section 2.1, implementation of th
eddy diffusivity model may either rely on a prescribed model coefficient or on a dynat
evaluation of the model constant. Here, we explore the latter option by adapting the dyn.
procedure in [17] to the filtered vorticity transport equation. Briefly, filtering the vortici
transport equation at scateand then at scala’ yields

00 L 4 99 _ 5 00 L 92 e T (18)
—_— i =0j— @i ik =
ot ax, . ax TGk Gy, T
and
Ao = 0w = o0 3 Fx
ﬁ UJE = Wj 8XJ +Vv (1)| +E|]ka +G|, (19)

respectively, wher& is the SFS torque at scal€. We now assume that the SFS torqges
andG can be modeled as in Eq. (15) with the same model coefficient; we thus have

9 [z = 0 0 / GI)
g = Cr2A2 [W ( ZSmnSmna_x_l> - W < 28mnSmn) axl ] (20)
J J J !

and
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Next, Eq. (18) is filtered as scale’ and the result is subtracted from Eq. (19), leading to

@ V& —-0-Vo)— (@ -Vi—&-Vi)=g—G. (22)

Substituting the model definitions in Egs. (20) and (21), and factoring the model coefficie
C;, we get

| = C?m, (23)

where
I =1C+1° (24)
1= @ Vo —10-Vd), (25)
IS=—(@-Vi—&- Vi), (26)
m=mP + m?, (27)
mP = A2V . (|S|V&) — A2V . (|§_|v5), (28)

and

M = —(A%(VIS]) - (Va)T — AR(VIS]) - (V). (29)

Note that andm involve resolved quantities only and that the only “unknown” in Eq. (23
is C;. However, Eq. (23) is a vector equality; i.€; is overspecified. This difficulty is
tackled by selectin@, so as to minimize the average square error [32, @3]e), where

e=|—-C2m. (30)

Differentiating the mean-square error with respecCfoand assuming that the model
constant can be factored out of the filtering and averaging operators (for a discussion o
limitations of this assumption, see [33]), we get

0

ad a
— (e =——(-1)-2 C2(l-m CHm-m
aCr2( ) aC,2< ) aC,Z( r >)+8Cr2( r )
= —2(I - m) + 2C(m - m).
Thus, the mean square error is minimized when
CZ=(I-m)/(m-m). (31)

This completes the formulation of the dynamic model.

Note that there may be several choices for the averaging operation, including spq
averaging [17, 33] and averaging over particle trajectories [34]. For simplicity we restr
our attention to simple spatial averaging, although Lagrangian averaging appears as a n:
candidate for future studies.
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3. PARTICLE DISCRETIZATION

As mentioned in the Introduction, one of the motivations of the present work is !
implementation of the SFS vorticity model in a Lagrangian vortex method. In this sect
we focus on formulating an appropriate particle discretization of the SFS model, wt
performance will be later tested against the predictions of finite-difference and spe
approximations. The approach adopted below closely follows well-known vortex elerr
constructions; see reviews in [35—-37]. Thus, we start with a brief summary of the Lagran
discretization and then discuss the model implementation.

3.1. Vortex Method

The three-dimensional vortex element method is a Lagrangian technique for the sin
tion of the vorticity transport equation:

dw

E—l—u Vw=w- Vu+vVw. (32)
In its simplest form, the method is used in an unbounded space with no internal bound:e
where the velocity is given by the Biot—Savart law [38]:

ux) = ——/ (X = X) x w(x) d3x’. (33)

Ix —x'|3

The essential feature of the vortex method used in the present work is the represen
of the vorticity field using a finite numbel, of desingularized vortex elements. The vorte;
elements are specified in terms of their position vetgrstrength¢;, and volumedV,.
The elements induce a smooth approximation to the vorticity field, according to [39, 4

N
N =Y GO AV f(x = Xi (1), (34)
i=1
where
oo = 5515 (35)

is a spherical rapidly decaying core function &rid the core radius. The functiohis also
assumed to satisfy some moment conditions [40, 41] which govern the convergence c
scheme.

The vorticity distribution in Eg. (34) induces a smooth velocity field given by the des
gularized Biot—Savart law,

1 = (X—=Xi) x ¢
ux) = _E.Z X GV = X0, (36)
where
mx)—x('a'), x<r>=4n/rs2f<s>ds 37)
0

is the velocity smoothing kernel correspondingftf40]. In all of the computations below,
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we shall rely on the third-order Gaussian core function [42],

f(r)= 3 exp(—r3) (38)
4
with corresponding velocity kernel
k(r) =1—exp(—rd). (39)

As shown by Beale and Majda [40], this choicefoéindx leads to an “essentially second-
order” particle discretization.

Using the particle representation of the velocity and vorticity field, the 3D vortex meth
then transforms the original system (32)—(33) into a system of evolution equations for
particle positions and strengths. The evolution of the flow is determined by integrating

dX;

F T (40)
% — ¢, vuox) +vDIG (@1)

i.e. by moving the elements along particle trajectories and modifying their strengths
cording to the vorticity transport equation. HeE¢;] is the Lagrangian representation of
the Laplacian [43].

Below, we will explore how the particle representation of the vorticity field can b
understood as a spatial filtering operation and, hence, exploited to dynamically detern
the coefficient of the SFS model. To this end, it is first necessary to specify the meanin
various filtering operations in the present Lagrangian context.

3.2. Grid and Test Filtering

In Eulerian grid-based schemes, resolution is limited to the mesh spacing, quanti
represented on the computational grid are commonly considered to be “grid-filtered,” :
the filter width A is identified with the mesh size. In most situations, the precise relationst
between the filtering operation and the numerical discretization is either not establishec
stated in arad hocfashion. A similar issue arises for Lagrangian particle discretization
However, the situation differs due to the introduction of smoothing functions with a co
size that is larger than the particle spacing. Here, it is natural to associate the resolt
limit with the core radius§, and to consider the Lagrangian representation of the vorticit
field wN in Eq. (34) to be “particle filtered.” The correspondence between the filterir
and the numerical representation can be further clarified by noting that the Lagranc
representation in Eq. (34) is a discretized version of the approximate identity:

wX) =8(X) * w(X) = (gi_r)no fs(X) * w(X) = (!iLnOG;(x) (42)

wherex denotes the convolution operator. Thus, at fiditi is appropriate to interpret
wN(x) ~ @(x) as the filtered vorticity, and the core smoothing function as the spatial filte
The convection velocity in Eq. (40) is taken as the filtered velocity field. In this fashio
the total derivative in Eq. (41) includes the convective derivative with a convection veloc
equal to the filtered velocity field, as in the left-hand side of Eq. (11). The effects of subfil
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scale velocity and vorticity fluctuations on the transport of filtered vorticity are accoun
for in @;;. Alternatively, one could seek formulations in which the SFS model is written
terms of a diffusion velocity. Thus, the effects of unresolved motion would be accour
for in the equation describing the motion of the elements while the SFS term would ¢
out of the evolution equation for the vortex strengths. We shall not explore such approa
in the present work.

In order to compare different filters it is useful to “standardize” the definition of tt
filter size. Specifically, we seek to relate the vortex element core size to the Avidtfan
“equivalent” box filter. We introduce a scaling coefficientsuch thatA = ¢s, and define

a particle filterG 5 using
ALY
p A .

The constant is determined by requiring that the particle filt8r has the same charac-
teristic size as the spherical box filter,

6 .
—3 IFX[ < A/2,
Ba(x) = { & 44
alx) {O, otherwise (44)

3 3
GaX) = fape(X) = ym (E) ex (43)

A

This requirement is satisfied when the energy contents of the transt®snend B, are
the same, i.e. when

/ 1Ga (k)P d%k = / 1B (02 k. (45)

For the third-order Gaussian in Eq. (43), numerical evaluation of the above integrals vyi
¢ = 2.88243. Thus, the relationship between the core size and the (standardized) filter
is A = 2.885. Figure 1 compares the particle and the spherical box filters.

In the implementation of the dynamic model, application of a test filter is necessary. H
the test filter is assumed to have the same shape as the particle filter. The action of th
filter is defined by

S qOXi) exp[—(clx — Xi|/A")3]
SN exp[—(clx — Xi|/AN3]

q(x) = (46)

0.5 1.0
x|/ A

FIG. 1. Comparison of the spherical box filté, and the particle filterG. The spherical box filter is shown
using a solid line, while the particle filter is shown using a dashed line.



702 MANSFIELD, KNIO, AND MENEVEAU

whereq is the quantity being test-filtered ard is the width of the test filter. Note that both
the particle filter and test filter are defined in terms of the particle positions and strengt|

3.3. Evaluation of ¢

In order to determine the model const@ntdynamically one must evaluate, based on the
Lagrangian particle data, the quantiti€s|S, mP, andm?Z, defined in Egs. (25), (26), (28),
and (29), respectively. Note that® is a gradient diffusion term with spatially dependent
diffusion coefficient and thdthas contributions from vortex transpgtt) and stretching
(I%). Meanwhile m? is a generalized transport term involving spatial gradients of vorticit
and eddy diffusivity.

In estimatingmP, we rely on the Lagrangian approximations developed by Degond ai
Mas-Gallic [43] for an isotropic, spatially dependent diffusivity. In particular, it is shown il
[43] that the gradient diffusion operat®{¢] = V - (b(X) V¢ (X)) can be approximated as

1
DIc](X) ~ <5 D dVins Xk = X (X1, Xid (@ = &, (47)
|

whereX|, dM, and¢ are the particle positions, volumes, and strengths in the Lagrangi
representation af. Here, the kernej; is a rapidly decaying smoothing function that obeys
similar conditions as the core function used in the particle representation of the vortic
field. Meanwhile u is a symmetric kernel which satisfies [43]

wX,y) = u(y, X), px,x) = b(x). (48)

In the present application of Eq. (47), the kernes related to the gradient of the core
smoothing function; we use [43]

2df

fl(r)Eg(r)Z—r—a- (49)

In addition, we choose to associate the keppnelith the geometric mean diffusivity; i.e.,
we set

w(X,y) = /bx)b(y). (50)

Another well-known choice fopg is the arithmetic meany (x, y) = (b(xX) + b(y))/2 [43].
Thus, the diffusion ternv - (|S|V®) is approximated using

N
D VISKDIISKPI@X)) — @(X)) dVjgs(Xj — Xi). (51)
j=1

Once the diffusion term is obtained at all the particle locations, it is test-filtered accordinc

| =

V- (IS|V&) ~

N

8

SNV - (ISIVE) (X)) exp[—(cIXi — X;1/A)]

V- (ISIVO)(Xi) =
(St S exp[—(clXi — X;1/A)7]

(52)

A similar approach is adopted for the second term in Eq. (28) which involves diffusion
the test-filtered vorticity. Specifically, Eq. (47) is once again used, in conjunction with t|
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test filtered vorticity and strairSS; this yields

N — —
D AVISCDISXKPI@X)) = &Xi)) dVjgs (X — Xi).  (53)
=1

The filtered strain and vorticity values are computed by first calculating the filtered velo
gradient,V(; this is accomplished by analytically differentiating the desingularized Bio
Savart law and evaluating the resulting expression [44]. The results are then used to cor
a test-filtered version of the velocity gradient, as described in Eq. (46). The test filte
vorticity & and strairS are then extracted from the test filtered velocity gradient using thi
basic definitions.
We now turn our attention to the evaluation 6f As mentioned earlier (see Eq. (23,

is a difference between filtered versions of the convective derivative of vorticity, whict
absorbed by the Lagrangian formulation. In order to avoid explicit estimates of the vorti
gradient, we first rewrité© using the relationship

| =

V- (ISIV@) (X)) ~

N

)

IC=0-Vo-0-V&

BIA) 0o - =
=<_‘;’+u.va>—<8—°:+a-va> (54)
_”_a; d&

T odt dt’

whered/dt represents the time rate of change for an observer movirigvetile d/dt
represents the time rate of change for an observer moviigmathe proposed scheme, the
filtered Lagrangian derivatives are approximated using a forward derivative:

do] o . @G+ A, t+ AD — B (1), 1)
{dt} R At (55)
and
{d_&} Xt~ G (1) + Atli ). t + A — SG (D). 1) (56)
dt At

Based on the above approximations, we are now in a position to estinRzaaedI © for
each element directly from the Lagrangian data. Evaluatidn cdn be performed directly,
based on the computed values of the stretching term. Howeeyeiori tests performed in
the following section show that, for the purpose of evaluaBng® can be safely neglected.
The tests show thah? can be omitted as well, and this is a significant advantage since
evaluation is generally cumbersome.

Taking advantage of these results, we can now proceed directly to the evaluafipn o
As shown in Eq. (31)C; is given in terms of spatial averageslofm andm - m. In the
Lagrangian computations, these averages are computed by direct summation over the
of the elements; we use

_ ZiNzlli -m; d\f

l.
Y

: (57)



704 MANSFIELD, KNIO, AND MENEVEAU

N
am-mydV
(m-m) = ZENdv (58)
i=1 UV
The model coefficient is then obtained from

a ZiNzlmi midVi

4. APRIORITESTS OF SFS MODEL

In this section, the basic properties of the SFS model are examined traquighi tests,
using data from direct numerical simulations (DNS) of homogeneous, isotropic turbulen
The DNS data resulting from these simulations can provide direct estimates of the “re
SFStorque. The resulting data can then be used to assess the performance of the SFS
The analysis aims at addressing a variety of fundamental questions regarding both the
and modeled SFS torques, including: (1) What is the relative importance of SFS stretct
and tilting compared with SFS convection?; (2) How important is the “nondiffusive” pa
of the torque model?; (3) How well aligned are the real and modeled SFS torques?;
How does the dynamic model coefficient compare with the theoretical value?; etc. Th
questions are tackled below, following a brief description of the DNS data.

4.1. DNS Data

The DNS data used in the present work were obtained from simulations of forc
isotropic turbulence [45]. The simulations were performed using a pseudo-spectral
cretization of the Navier—Stokes equations in rotation form. Time integration is based
exact factorization of the viscous term and second-order Adams—Bashforth treatment o
nonlinear term. Thus, the solution is advanced according to [46, 47],

3
0" = 0" exp(—vk2At) + AtP - E(u x w)"exp(—vkZAt)
1 -
—5 U w)"Lexp(—2vk2At) + " exp(—vk?At) |, (60)

whereP is the projection operator in the direction perpendicular to wavenumber vector
k = k|, andAt is the time step. The forcingﬁ is adjusted at every time step to maintain a
constant energy injection rate. Forcing is performed for low wave numbers falling witt
the sphere & |k| < 2; it is expressed as

Uk

O S
> 0<jki<2 Uk - Uk

(61)
wheree is the energy injection rate. Dealiasing of quadratic terms is found to be unne
essary for this well-resolved DNS, but a spherical truncation procedure is neverthe
implemented.

Table | summarizes parameters used in the simulations. There are essentially two
sets with different resolutions, both at moderate, Reynolds number. We will primarily re
on the larger data set witN = 128 grid points.



DYNAMIC LES FOR VORTICITY TRANSPORT 705

TABLE |
DNS Simulation Parameters
N 64 128
L 21 2
u’ 0.11 0.22
l 1.37 1.33
A 0.56 0.42
Re, 66 93
€ 0.000704 0.004
n 0.0345 0.0224
0.001 0.001

Note L is the domain length\? is the number
of points,u’ is the root-mean-square velocityis
the integral scale), is the Taylor microscale, Re
is the Taylor Reynolds numbey, is the energy
injection (and average dissipation) rateis the
Kolmogrov scale, andis the kinematic viscosity.

4.2. Decomposition of Real and Modeled SFS Torques

Following the discussion in Section 2 the real SFS torguieas contributions from SFS
convection and SFS stretching and tilting. We identify these contributions by decompo
r using

N=rc+re, (62)
where
C o —
r- = —8—Xj(a)iuj —a)in) (63)
and
s_ 0 oo o
re = 8—Xi(uiwj —Ooj). (64)

Thus,r® andrS, respectively, denote the contribution of SFS transport and SFS stretct
and tilting to the overall SFS torque

In large-eddy simulations is not known and so it is replaced with the SFS moglel
(EqQ. (15)). The latter is also decomposed into two parts,

g =09°+09", (65)

3 PR 15t
o = CEAzg (x/zsmnsmnzj)(f) (66)

J

where

is a familiar gradient-diffusion term, and

3 0\ 00
of = —CEAZB7 <\/2smnsmn> a_x] (67)
]

is an additional term due to spatially varying eddy viscosity.
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FIG. 2. Probability density of/r|/|IrS|.

Below, we examine the behavior oand assess the roles of SFS transpdrt and SFS
stretching and tiltingrS). Similarly, we examine the relative contributionsgdfandg? to
the modeled SFS torque Insight gained from this exercise is used to guide analysis
model performance.

4.3. Roles of SFS Convection and SFS Stretching and Tilting

The relative magnitudes of andrS are examined using the 128NS data set. The
filter width is settoA = 0.448, which corresponds to 11 mesh spacings approximately. Tl
ratios of filter width to Kolmogorov scale and filter width to integral scale aye = 20
andA /¢ = 0.34, respectively. Filtering of the DNS data is performed using the third-ord
Gaussian filter (Eq. (43)).

Figure 2 shows the probability density distribution of the ratio of torque magnitud
[IrS]|/]Ir€||. The figure shows thaP is generally smaller thar¥, but that it is not negligible.

In fact, the results in Fig. 2 indicate that the magnitudeois larger than that of©

in over 15% of the volume of the flow. Table 1l shows the magnitudes of the subfilt
scale torques® andrS conditionally averaged over those regions whgre| > ||rS|],
and wherg|rC|| < ||rS|. Also shown are the averaged values over the entire domain. T
results show that the ratio of the average magnitudeé aindrS in the entire domain is
(IrS I/ {IrC )y = 0.456. Table Il also indicates that, whene? | exceedd{rC ||, itis as much
due to||rS| being large as it is due trC|| being small; i.e., large values §fS|/|r¢| do
not occur only wherdir€| is unusually small.

Table 11l provides the correlation coefficient between the two SFS torduesidrS.
Included is a breakdown of the results into quintiles of magnitudesCoénd of rS.
The breakdown is based on defining five bins each associated with an interval of tor

TABLE Il
Averages and Conditional Averages of Normalized
Subfilter Scale Torques

(110 (-S> s (- = e
r¢ 11.8 14.0 6.14
rs 5.83 5.26 8.99

Note Values ofr € andr® are normalized by multiplying bg? /u’.
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TABLE 11l
Correlation of r€ and rS
Quintile Correlation Correlation

All Iyl —0.276 (eS| —0.276

0 0.0668 0.0093

1 5.06 —0.0956 2.25 —0.0713

2 8.15 —0.148 3.65 —0.118

3 12.0 —0.189 5.43 —0.163

4 18.7 —0.238 8.50 —0.218

5 141. —0.345 68.4 —0.364

Note The correlation coefficient ig € - rS)/[(r® - r€)(rS . r$)]¥2. The columns
[Ir€|l and||rS|| contain theith quintile of those norms. The zeroth quintile value is
the lowest value of the corresponding norm. The correlation value fothiggiintile
is the correlation value obtained using the set of points where the norm falls between
values indicated at rowisandi — 1.

magnitudes; each bin contains those data points where the torque magnitude falls withi
associated interval. These intervals form a partition of the overall range of torque ma
tudes, and their endpoints are selected so that each bin contains essentially the samer
of points. Thus, when the data is binned according to the magnitude thfe first bin con-
tains those points for whichrC|| falls within the first quintile, the second bin contains
points for which||r€|| is within the second quintile, and so on. The results in Table 1Il shc
thatr® andrS have a small tendency to be anticorrelated. This result is also illustratec
Fig. 3 which depicts the distribution of the angle betwe®erandrS. Also plotted using a
dotted line is a sine curve, which corresponds to a uniform random distribution of anc
The data in Fig. 3 are shifted to the right of the dotted line, indicating a propensit§ for
andr® to be anti-aligned. The correlation values in Table Ill show that anti-alignment
more likely for larger vectors, while small vectors are almost randomly aligned.

One can conclude from the present analysis of the real SFS torque that the effec
subfilter scale convection and of subfilter scale stretching and tilting are both signific
and that, in principle, an accurate model should reproduce both effects. The results :
thatr® andrS follow different trends and may thus require different models.

1.5

o
T
g

P(angle)

ool
0 n/2 ™

C S
angle between r” and r

FIG.3. Probability density of the angle betwegnandrS. The dotted line follows a sine function distribution,
which would correspond to uniform random alignment between the two torques.
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TABLE IV
Averages and Conditional Averages of Normalized Model
Subfilter Scale Torques

(-/C21 /G2 =gy <li-/C2IgPl < gl
g° 849 860. 167.
g2 110. 108. 232.

Note Values ofg® andg? are normalized by multiplying bg?/u’2.

4.4. Behavior of SFS Model

A similar analysis is conducted for the modeled SFS torgfesndg?. Figure 4 shows
the distribution of the ratidg?||/||g®||. The curve shows thay’ is typically an order of
magnitude smaller thagP. It also indicates that the magnitudegsfexceeds that ag® in
less than 1.5% of the volume of the domain.

These observations are further amplified in Table IV, which provides averages and co
tional averages dfg?| and|gP||. Consistent with the trends in Fig. 4, Table IV shows tha
the ratio of the average magnitudesgdfandgP is quite small;(||g?|)/(|Ig°||) = 0.130.

In addition, the tabulated conditional averages indicate that where the|gatjg||o®|| is
large, it is primarily due to small values ¢fP|. Finally, Table V shows thag® andg?
are poorly correlated, with near-zero correlation at all bandg®f and||g?||. This is also
illustrated in Fig. 5, which shows that the angle between the two SFS torques nearly follc
a random distribution.

The present tests clearly indicate tjatplays a minor role in the SFS model. Moreover,
since its evaluation in the context of a particle approximation would be quite involved, \
will assume that? can be neglected from the model. This approximation will be adopte
in the tests of the following section and implemented in [14].

4.5. Correlation ofr andg

In this section the modeled subfilter scale torgus compared to the “real” SFS torque
r. The analysis relies on the same data set and parameters used in the previous sectic

Figure 6 shows the distribution of relative orientation of the SFS torgaasg. Plotted
are five curves corresponding to a breakdown of the data into quintilgs| ofdeally, the

wm

»

N

N

P/ 118D

—

30 02 02 06 08 1.0
gl / llg”

FIG. 4. Distribution of the ratio|g?|/|Ig°|.
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TABLE V
Correlation of gP and gZ. The correlation coefficient

is (gP - g%)/[(gP - gP)(g? - g#)]¥2

Quintile Correlation Correlation
All lgP/C2| 0.00600 llg?/C2|l 0.00600

0 2.80 0.252
1 308. 0.00404 375 0.00437
2 515. 0.0113 64.9 0.000366
3 788. 0.0126 101. —0.000671
4 1250 0.0123 163. 0.000168
5 9160 0.0028 1830 0.0110

Note A breakdown into quintiles is performed as in Table IlI.

modeled torque would be perfectly aligned with the real torque, and the angle betwee
two vectors would be everywhere equal to zero. Figure 6 shows that the alignment bet
r andg is substantial, although far from perfect. It is interesting to note that the alignm
is strongest wherér|| is largest. This exercise was repeated by breaking down the d
according to the magnitude 4§|; the results reveal essentially the same trends as the
shown in Fig. 6 and are therefore omitted. On the other hand, the results show a diffe
trend when binning is based on the magnitude of the resolved voriityFigure 7 shows
that the alignment betweerandg is almost independent of vorticity magnitude.

Tables VI and VII provide correlation coefficients and conditional correlationsaoid
g. The results show that correlation oéndg is around 0.6 in the highest quintile ¢f||
but only around 0.2 in the lowest quintile ¢f| (Table VI). In contrast, when binning is
based on|@||, Table VII shows that the correlation ofandg varies slightly, from 0.573
for the highest quintile to 0.444 for the lowest quintile.

One concern ira priori tests is that too much information may be used to calculs
the subfilter scale torque modglinformation that would not be available at the resolve
scales during LES (see the discussion in &fal.[22]). To examine this issue the spectra
collocation approximation of is replaced with its centered-difference approximation o
meshes coarser than that of the DNS. Tables VI and VII provide correlation results
tained from both a spectral collocation approximation on the DNS grid (mesh)iaed

1.5

7T'/2 I . ™
angle between gD and gz

FIG. 5. Alignment ofg® andg?.
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TABLE VI
Correlation of r and g

Finite difference
AFD/Af\Iler

Spectral  0.0867 0.173 0.260 0.347

Quintile Correlation coefficients

All Irll x €2/u? 0513 0.453 0.451 0.419 0.359
0 0.0436

1 5.32 0.173 0.153 0.155 0.147 0.125
2 8.35 0.269 0.238 0.240 0.226 0.194
3 121 0.352 0.311 0.313 0.295 0.253
4 18.4 0.440 0.392 0.394 0.372 0.324
5 147. 0.611 0.541 0.540 0.509 0.450

Note The correlation coefficient ig - g)/[(r - r)(g- g)]¥/2. A breakdown
into quintiles of||r|| is performed, as in Table IlArp / Asirer gives the ratio
of the finite-difference grid to the filter width.

5th quintite

TN
o
o 44
- I 3r
O
S~
o

0 ‘ h ﬂ/Z l ‘ \7T
angle between r and g

5th quintile

0 /2 ™
angle between r and g

FIG.6. Alignment of real and modeled SFS torques, binned by quintilgs|pf(top) distribution of the angle
betweerr andg; (bottom) relative density.
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TABLE VII
Correlation of r and g

Finite difference

Arp/ Atiter
Spectral  0.0867 0.173 0.260 0.347
Quintile Correlation coefficients
All &l x ¢/u 0513 0.453 0.451 0.419 0.359
0 0.0336

1 2.92 0.444 0.375 0370 0.325 0.237

2 4.40 0.466 0.395 0.392 0.351 0.272

3 6.06 0.498 0.423 0.420 0.383 0.314

4 8.40 0.530 0.463 0462 0.429 0.367

5 28.1 0.573 0.521 0520 0.496 0.452

Note The correlation coefficient i - g)/[(r - r){g- g)]*2. A breakdown
into quintiles of||&|| is performed, as in Table HAgp / Asier gives the ratio
of the finite-difference grid to the filter width.

5th quintile

4th
O . 5 [~ 3rd
2nd
1st

>N

=
UC’) 75 5th quintile ]
)

©

0.0 e
0 /2 T

angle between r and g

FIG. 7. Alignment of real and modeled SFS torques, binned by quintiléRidf. (top) distribution of the
angle between andg; (bottom) relative density.
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second-order centered differences on regular grids of mestsizeh, 2h, 3h, and 4.
Recall that the filter size\ is roughly 1h. As a reference, typical particle spacings to be
employed in Lagrangian simulations [14] are half the core sizeAi/g2c) ~ 2h.

At Ax =h, the correlations obtained with finite differences are about 11% lower th:
those obtained using the spectral computations. This drop could be attributed to lo
accuracy in the finite difference calculations, but not to filtering or loss of informatic
since the same data set is fed to both calculations. The correlation results are nearl
same when using centered differences with=h and Ax = 2h. This indicates that the
quantities being evaluated are smooth at those scales. Howevex,iasncreased further
the correlation of andg once again decreases;&k = 4h the correlation is about 27%
smaller than the spectral prediction. The drop in correlation is quite even across all quint
of ||r||. On the other hand, when binning is based on resolved vorticity magnitude the d
in correlation is smaller whergd || is high, and greater wheffgo|| is low.

The alignment betweeg andr is also examined by binning the data according to the
enstrophy source term -t andw - g. These terms represent production or dissipation ¢
resolved enstrophy by the real and modeled SFS torques, respectively. Figure 8 show:
alignment ofr andg is highest wherev™ r is smallest (most negative). (Results obtainec
by binning according ta,~ g show a similar trend and are omitted.) In other words, wher
the real subfilter torque is diminishing the resolved enstrophy, it acts in a diffusive fashi

1.5

1st quintite

P(angle)

0.5

0.0

angle between r and g

25 .

1st quintile

density
¢

(@]
T T
1

:.Alh._.
0 /2 T
angle between r and g

FIG. 8. Alignment of real and modeled SFS torques, binned by quintiles of: {top) distribution of the
angle between andg; (bottom) relative density.
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FIG. 9. Alignment of portions of the real and modeled SFS torques.

In order to gain deeper insight into the strengths and weaknesses of the model, we an
the correlation of only portions of the SFS torque and the SFS modetCevgrsusg, orr
versugy. Results of this exercise are plotted in Fig. 9. The alignmentsinfig® and ofr®
andg have distributions which are similar to thatrodindg. On the other hand, the relative
orientations of andg? show no preferred alignment® andg show a slight tendency to
form a 70 angle, but their alignment is basically random. Figure 9 indicates that the pal
alignment ofr andg is primarily due to the correlation betweeh andgP. There is no
relation betweem andg?, nor between® andg®. These observations provide additiona
motivation for ignoringy?. However, it was shown above that SFS stretching is significa
so that the poor alignment betwegandrS is clearly a weakness of the model.

Briefly, the indications from the present analysis are that the diffusive SFS torque mq
has some correlation with the convective portion of the SFS torque but that it does
do anything to capture the effects of SFS vortex stretching and tilting. An effective mc
of the subfilter scale stretching and tilting would be a significant addition to the mo
used in the present work, but this problem is relegated for future work in this area. W
yielding low correlation coefficients durirsgpriori tests, the eddy—viscosity closure still ha:
advantages from a practical point of view, mainly because it enhances numerical stability
dissipation. The main practical difficulty with this model is to choose the model coefficie
which we address in the next sections.
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4.6. Determination of Model Coefficient

The correlations of andg obtained in the previous section, as well as the correspondir
alignment angles, are independent of the value of the model coeffiCiefor the subfilter
scale model to be complete, howewey, must be determined. In this section, we explore
three methods for computing,. They are all based on the, norm appropriate to the
present formalism, the enstrophy being defme@ @s ;). As detailed in Appendix A, the
resolved enstrophy is produced by resolved vortex stretching and dissipated by the sub
terms.

In the first and second approaches, we rely on the DNS data to determine the value o
model coefficient. The first approach is based directly on the balance between enstrc
production and modeled enstrophy dissipation by the model:

- @i ;i 00 &
(a)iszij) = V<EE> +C3A2<ma X; 8X] >
ad [ = = 0 . .
+ CEA2<K < 28mnSmn) &(wiwj)>’ (68)
i i

from whichC; can be immediately determined by evaluating the averages from the DN
The second approach is similar to the first; it is based on requiring that the SFS mc
dissipate the same amount of resolved enstrophy as the real SFS torque, i.e. on enfo
the balance

@-n=(@-9. (69)

Substituting the definitions afandg (Egs. (62)—(67)) into Eq. (69) yields

~ 9 d .
<a),[—W(w.uj @i |)+ (Ua)J u.w,)}>

]
3 A, 3 A&
- cz< {AZGX. (‘/ZSm"S”‘”axl> — A287<\/28mn8mn> axJD' (70)
| J ]

Equation (70) can be directly used to compGte Note that, unlike the first method, the
unfiltered values, or at least averages of products of unfiltered values, are required. Natul
these are taken from the unfiltered DNS data.

In the third approachC; is evaluated using the dynamic procedure. To this end, tf
vectorsl andm are evaluated from their definitions, i.e. by plugging the filtered data int
Egs. (24)—(29). Onckandm are computedC; is determined using Eq. (31).

The predictions of the first method are provided in Table VIII. The results show that t
predicted values o, for different filter sizes are comparable but tizatdecreases a&
increases. The drop @, is weak wherA is small, but it is noticeable whefs approaches
the integral scale. Table VIII also provides the average value of enstrophy product
and viscous dissipation. The computed values show that at small filter scales the resc
enstrophy is primarily dissipated by molecular viscosity, while at large filter size most
the dissipation is due to SFS torques.

Additional information regarding the enstrophy balance leading to the present predicti
is provided in Table IX, which shows the computed values of the remaining termsin Eq. (€
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TABLE VI
Model Constant C; Obtained by Balancing Enstrophy
Production and Dissipation

A/n N G (@@ Sy x CB/uB  v(VE VD) x £3/ud
5 128  0.0858 197.64 148.54

10 128 0.0816 112.56 59.024

20 128  0.0772 39.344 12.456

40 128  0.0734 8.7664 1.5396

80 128 0.0591 1.1763 .15265
65 64 0.0802 93.198 65.686

13 64  0.0767 44.240 20.855

26 64  0.0702 11.687 3.4655

52 64  0.0601 1.6987 35335

Note Results are obtained for different filter sizes, using both tife 64
and 128 DNS data sets.

The results in Table IX support some of the approximations made in the analysis
Appendix A); in particular they show that

(VISD) - [V - (@@)]) < (ISIV& : V&) (71)
and
(ISIV& : V&) ~ (IS|) (V& 1 VaT). (72)

The predictions of the dynamic model are given in Table X. In all cases conside
the calculations are based on a test filter width= 2A, as is typically the case in many
applications [17]. Included in Table X are calculations made while neglettirrmd/or
m?. The differences irC, caused by these approximations are minor; this is consist
with arguments and experiences discussed above. The predicted v&udadis in the
range 0.09-0.10, but decreases slighthAaisicreases. As noted earli€; tends to drop

TABLE IX
Elements of Resolved Enstrophy Dissipation

Am o N ((VISD-[V-@&)])  (ISIV&:V&T)  (IS)) (V& : V&)

5 128 993.89 606217. 447272.
10 128 70.273 183983. 152996.
20 128 —11.983 25702.4 23734.9
40 128 —1.9094 1913.06 1863.79
80 128 —0.94686 105.093 105.173

6.5 64 98.505 101700. 85524.3
13 64 —43.951 23727.0 21853.8
26 64 —7.7209 2493.09 2413.51
52 64 0.15264 138.708 137.811

Note Values are normalized by multiplying By u”.
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TABLE X
Model Constant C, Obtained by the Dynamic Model
. C . . mP C.mP
A/n N (I'-m) (1€ - m) (I'-m®) (1€ -mP)
(m-m) (m-m) (mP - mP) (mP - mP)

5 128 0.1042 0.1021 0.1040 0.1023
10 128 0.0980 0.0959 0.0978 0.0961
20 128 0.0948 0.0924 0.0946 0.0926
40 128 0.0920 0.0893 0.0923 0.0905
80 128 0.0699 0.0725 0.0789 0.0813

6.5 64 0.1035 0.1011 0.1031 0.1013
13 64 0.0944 0.0917 0.0943 0.0922
26 64 0.0839 0.0804 0.0838 0.0811
52 64 0.0887 0.0864 0.0951 0.0901

Note Results are obtained for different filter sizes, using both tifeafu
128 DNS data sets.

appreciably as the filter size becomes very large. A similar dr@p-at ¢ was recently ob-
served for the Smagorinsky coefficie@t [48], based on energy dissipation arguments
However, it was found tha€Cs also decreases in the limit af — n [48], while here
no such decrease is observed @r. SinceC, depends on gradients of vorticity as op-
posed to velocity, it is plausible th&, is less affected by viscosity thabs at small
scales.

Finally, Table Xl compares the computed valuesGpfusing all three methods. The
table shows that the predictions of the dynamic model are generally 18—-25% higher t
those obtained using methods 1 and 2. On the other hand, the predictions of the
namic model are about 20% smaller than the theoretical v@lue0.12 obtained in Ap-
pendix A. Nonetheless, one may still note that the values of the model constant determ
using the dynamic procedure are fairly consistent with those obtained from enstro
balances.

TABLE XI
Model Constant C, Obtained by: (a) Balancing Production
and Dissipation of Resolved Enstrophy; (b) Balancing the En-
strophy Dissipation of the Real and Modeled SFS Torques; and
(c) the Dynamic Procedure

A/ N G @ G (b) C (0

5 128 0.0858 0.0871 0.1042
10 128 0.0816 0.0827 0.0980
20 128 0.0772 0.0799 0.0948
40 128 0.0734 0.0822 0.0920
80 128 0.0591 0.0886 0.0699

6.5 64 0.0802 0.0843 0.1035
13 64 0.0767 0.0818 0.0944
26 64 0.0702 0.0799 0.0839

52 64 0.0601 0.0852 0.0887
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5. APRIORITESTS OF PARTICLE APPROXIMATION

The objective of this section is to establish the ability of the particle representat
(Section 3) to accurately determine the model coefficient and SFS torque. The analy:
based on comparing predictions of the particle approximation to the corresponding spe
values. The same DNS data is used to both determine the spectral values and to initiali:
particle field. Specifically, the data are filtered by convolution with the third-order Gauss
core smoothing function (Eq. (43)). The convolution is performed on the DNS date
Fourier space. Based on the filtered DNS data spectral collocation estimétes; aindw
are then obtained in physical space. Al€o= (G- V& — @ - V&) andmP are computed,
based on spectral differentiation and test-filtering at scaleath the cubic Gaussian.
These are the “spectral” values at the collocation points.

To compute their particle approximation, we imagine placing particles at collocat
points and associate the spectral values di, andS at those points with “particle values”
there. Next, the termE® andmP® are computed from these particle values, according
the proposed scheme. Results are compared to the spectral valitesarad mP. Some
intermediate variables are also compared.

In the evaluation of Lagrangian derivatives (Egs. (55) and (56)) the DNS data at two t
levels,t andt + At, are used. The normalized time stepis' /¢ = 8.34x 1073, In evaluat-
ing the particle vorticity at timé+ At, the particle positionX; (t) (initially the collocation
points) are updated using a second-order predictor—corrector scheme & @ive At)
(which typically no longer coincide with collocation points). The vorticitieXgatt + At)
are obtained by bilinear interpolation of the grid-based vorticity at tisseAt. Equations
(54)—(56) are then used to determine the Lagrangian derivatii@gdt], [de/dt], and
[d&/dt], and consequently©. The diffusive terms in the expressionsrof require data
at a single time level. The diffusion terrvs. (|§|VG:), \ (|§|VG)), andV - (|§|V<I_:) are
found directly from the particle data following Egs. (51)—(53). The results are then plug
into the definition ofm® (Eq. (28)).

By adopting this simplified approach, the analysis addresses the validity of the par
approximation only. This represents a conservative approach, since the adopted initializ
scheme is rather crude, and the particle distribution may be further tuned to provide b
agreementwith the DNS data. However, itisimportant to stress that this test does not ad
the performance of the actual Lagrangian vortex method, where the dynamical equa
must be integrated over many time steps [14].

Tests are performed using four different particle distributions. In the first capa6d-
cles are uniformly distributed in the domain; i.e., they are placed at the nodes of a unif
Cartesian grid. As mentioned above, we associate the particle strength with the local fils
vorticity; i.e., we set;; = @(X;). The volumes of the particles ai&/ = h3, whereh is the
mesh size of the Cartesian grid. For the second case, the same number of particles is us
the particles are randomly distributed within the domain; a uniform random distributior
3D is used for this purpose. The third and fourth distributions are similar to the first and :
ond, but they use a smaller number of particsz 32%. Thus, the effect of particle density
can be examined. Unless otherwise noted, tests are performed with a filteramwidth0n.

At each particle position, all the quantities needed to deterifimadmP are computed
using both the spectral and particle schemes. The spectral computations rely on’he
DNS mesh. Since the filter size is significantly larger than the grid spacing, the filte
quantities are very smooth. Thus, the interpolation errors are found to be insignificant
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FIG.10. Lagrangian derivatives of vorticity. Left, y, andz components ofiy/dt, arranged from top. Right:
X, Yy, andz components oﬁ/dt, arranged from top. The Lagrangian calculations (dash) are obtained using
uniform distribution of 64 particles, while the spectral calculations (solid) are performed on g8 Values
are normalized byu'/¢)2.

5.1. Regularly Placed Particles

Comparison of spectral and particle predictions of various Lagrangian derivatives
provided in Figs. 10 and 11. The figures show 1D profiles along a selected line across
3D domain. The results show that there is generally good agreement between the spe
and particle predictions afe/dt. There is better agreement between the computed valu
of d&/dt andd@/dt, and it is hard to distinguish between the spectral and particle resu
for €.

Spectral and particle results for various filtered diffusion terms are shown in Figs. 12 ¢
13. The results for diffusion of grid filtered vorticity, - (|§|V&;), are in rough agreement.
The particle method experiences its largest errors at the extreme values of the deriva
Note, however, that there is a better match between the predictions of the test-filte
diffusion terms. This leads to a good agreement between the resutt® falthough the
extreme values appear to be slightly underestimated.
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FIG. 11. Lagrangian derivatives of vorticity. Left, y, andz components ofic/dt, arranged from top.
Right: x, y, andz components of°, arranged from top. The Lagrangian calculations (dash) are obtained usin
uniform distribution of 62 particles, while the spectral calculations (solid) are performed on adgr28 Values
are normalized byu’/£)2.

In order to provide a global contrast of particle and spectral results we rely on sce
plots of 3D data sets. Such plots are provided in Figs. 14 and 15, which compare particle
spectral computations of Lagrangian vorticity derivatives and diffusion terms, respectiv
The figures indicate that essential features in the 1D profiles are also, to a great e
representative of the 3D data. In particular, the plots clearly illustrate that there is ger
agreement between particle and spectral computations and that the agreement is quite
for test-filtered quantities.

Another advantage of the scatter plots is that they enable us to extract quantitative g
measures of the agreement between the Lagrangian and spectral predictions. Het
simply rely on the slope of the least-squares linear fit of the data in the scatter plots, ar
their linear correlation. Table XII gives the slopes of least-squares fits for selected vec
For the same cases, results for the linear correlation are provided in Table XIlI. Since
flow is isotropic, only thex-component of the vectors is considered in this analysis.
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FIG. 12. Diffusion of resolved vorticity. Leftx, y, andz components oW - (|§\V&:), arranged from top.
Right:x, y, andzcomponents oV - (\§|V&;), arranged from top. The Lagrangian calculations (dash) are obtaine
using a uniform distribution of 64particles, while the spectral calculations (solid) are performed on adr8
Values are normalized hy?/¢*.

Note that perfect agreement of the particle and spectral calculations would result in
points falling on a line through the origin with slope equal to one. This is nearly the ca
for IZ. It is interesting that the correlation &f is much better than that of either of the
terms used to compute i€ = da/dt — da/dt. This suggests that errors in computing
the Lagrangian derivatives are cancelled while taking the differences of filtered terms. -
correlations ofi®, /dt andd@, /dt are better than the correlationdi, /dt, which is still
arespectable 0.914. The particle resultsddy /dt have a slope of 1.1, but the test-filtered
predictionsd@y /dt andday /dt have a slope of 0.98 and 1.04, respectively. Overall, a ne:
unity slope of 1.008 fof¢ is obtained.

Results of the Lagrangian calculations of diffusion terms are generally in good agreerr
with the corresponding spectral computations. Linear correlation coefficients fall in t
range of 0.96-0.99 for all the diffusion terms. However, the slope of the linear fit f
V. (|§|VG)) (0.632) is rather low. The high value of the linear correlation and the behavi
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FIG. 13. Diffusion of resolved vorticity. Leftx, y, andz components o¥ - (|§\V&_z), arranged from top.
Right: x, y, andz components ofn®, arranged from top. The Lagrangian calculations (dash) are obtained usin
uniform distribution of 62 particles, while the spectral calculations (solid) are performed on adgr28 Values
are normalized bwy'2/¢%.

ofthe scatter plots indicate that the low value of the slope is due to underestimated predic
across the whole range of values and not just not just an attenuation of extreme events.
test filtering, the discrepancy drops to 12—17%. This suggests that the discrepancy is
dependent and not due to a constant factor in the method.

5.2. Variation of Parameters

In Section 5.1, the numerical tests focused on a single Lagrangian discretization, with
ticle data initialized on a uniform grid. Here, we briefly examine the effects of a nonunifo
distribution of particles, of particle density and filter width.

In orderto examine the effect of an irregular distribution of particles the numerical tests
repeated using a random initial distribution, but with the same number of paiticle$4°.
Bilinear interpolation is used to obtain values at particle locations. One-dimensional |
files and scatter plots for the Lagrangian derivatives and for the diffusion terms have |



722

40
30

20

&y /dt
B

particle:
]
o

-40

T,/ dt

particle:

FIG.

MANSFIELD, KNIO, AND MENEVEAU

TABLE XII
Slope of Least-Squares Linear Fit of the Particle-Spectral Data

Filter width A/n=20 A/n=40
No. of particles 62 32 32
Arrangement Regular Random Regular Random Regular Random
Quantity Slope
cfc?)x/dt 1.103 1.006 1.103 1.007 1.042 1.001
da,/dt 0.983 1.000 0.983 1.015 0.996 1.005
da,/dt 1.046 1.001 1.001 1.013 1.018 1.011
I 1.008 0.993 1.006 0.969 1.005 0.999
\ (\§|V€ox) 0.632 0.632 0.658 0.625 0.582 0.588
V- (IS|Véy) 0.880 0.870 0.935 0.863 0.883 0.885
V- (IS|Vay) 0.867 0.856 0.919 0.846 0.862 0.876
m> 0.835 0.823 0.884 0.804 0.815 0.840

) L
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14. Lagrangian derivatives of vorticity. The particle values, obtained using a regular distributiof of 6
particles, are plotted against the corresponding spectral computations, performed or? thal$2gid.
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TABLE XIlI
Linear Correlation of Particle and Spectral Data

723

Filter width A/n=20 A/n=40
No. of particles 62 32 32
Arrangement Regular Random Regular Random Regular Random
Quantity Correlation
da, /dt 0.914 0.972 0.914 0.972 0.984 0.995
da,/dt 0.972 0.992 0.972 0.947 0.994 0.984
da,/dt 0.984 0.989 0.984 0.932 0.997 0.986
I 0.999 0.988 0.999 0.922 1.000 0.986
V- (1S|Véy) 0.963 0.946 0.958 0.834 0.951 0.934
V- (IS|Véy) 0.998 0.993 0.997 0.957 0.997 0.992
V- (1S|Va&y) 0.994 0.955 0.993 0.736 0.993 0.960
m? 0.988 0.896 0.987 0.592 0.984 0.895
20 T T T T T T T S————— T T
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FIG. 15. Turbulent diffusion terms. The particle values, obtained using a regular distributiofd pa6itles,
are plotted against the corresponding spectral computations, performed on N2 rid.
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obtained [49], but they are omitted since they exhibit essentially the same trends obse
earlier. Thus, we focus exclusively on global measures. Our experience is that adopti
random distribution of particle positions slightly improves the correlation of the Lagrangi
derivatives (Table XIIl) and, more significantly, the slopes of the corresponding least-squz
fits (Table XII). However, the correlation ¢f drops slightly, from 0.999 to 0.988. Thus,
it appears that the systematic cancellation of errors that occurs while taking differen
of Lagrangian derivatives (Section 5.1) depends on the spatial arrangement of partic
The random placement of particles has a slight negative impact on the diffusion ter
The correlations foiv - (|S|Va>x) andV . (|S|wa) appear unaffected by the change in
particle arrangement. However, the correlatlon§ot|S|wa) and formP both decrease,
from 0.994 to 0.955 and from 0.988 to 0.896, respectively. Thus, the effect of the parti
arrangementon the prediction of the diffusion terms is more noticeable. This is not surpris
since the random arrangement may easily cause severe deterioration of an already
particle strength initialization scheme.

The effects of particle density are analyzed in a similar fashion, and the results are :
reported in Tables XIl and XIIl. Included are results obtained usirfgp@2ticles, both with
regular and random particle distribution schemes. Briefly, when a regular arrangemei
used the change in the number of particles has a very small impact on the predictions
the other hand, when a random distribution of particles is used the reduction in numbe
particles leads to noticeable deterioration in the correlations with spectral results. Consis
with the discussion above, the effects are more pronounced for the diffusion terms.

Tables Xlland Xlll also provide results of tests conducted at larger filter width, = 40.
The tests are repeated using particles in order to keep the same filter width to particle
spacing ratio. Briefly, the results are very similar to those obtained at smaller filter wic
and higher particle density and, consequently, lead to the same conclusions.

5.3. Dynamic Model Coefficient

Finally, the particle scheme is used to compute the dynamic model coeffiCiers
outlined in Section 3 (see also discussion in SectiornCd)is obtained based on partial
estimates of andm; specifically, we use

C . mby \ /2
c,:<<'7m>)> . (73)

(mD . mD

Results are givenin Table XIV. Fot = 64° andA /n = 20, Table XIV shows that, = 0.105
when a regular distribution is used a@d= 0.095 when a random distribution is employed.
Both values are close to the spectral prediction, with differences of less than 10% and O.
respectively. Good agreement is also obtained when a regular distributioiNwitB2® is
used. However, for a random distribution with= 328, C, =0.062, roughly 35% lower
than the spectral prediction. Dynamic predictionsAgi = 40 andN = 32° match closely
values calculated using /n =20 andN = 64°.

We conclude that for grid filter widtiA /5 = 20, 64° particles provide a sufficient reso-
lution for adequate prediction of the model coefficient and the SFS torque. Good agreer
with spectral predictions holds, whether the particles are arranged regularly or randor
Results with 32 particles arranged regularly agree with results using the larger particle de
sity, but the agreement is reduced at the lower particle density if the particles are arrar
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TABLE XIV
Dynamic Model Coefficient Using
the Particle Scheme

A/n  No. of particles  Arrangement C,

20 64 Regular 0.1052
20 64 Random 0.0952
20 32 Regular 0.1021
20 32 Random 0.0621
40 32 Regular 0.1070
40 32 Random 0.0950

randomly. Using a larger filter width and only 3garticles, however, maintains the resolu
tion needed for the particle calculations to agree with the spectral calculations, regar
of particle placement.

6. SUMMARY AND CONCLUSIONS

A dynamic eddy diffusivity model is developed for large eddy simulation of the vortici
transport equation. The performance of the model is examined in lighdradri tests, based
on results of direct numerical simulations of homogeneous, isotropic turbulence. Anal
of the real and modeled SFS torques leads to the following conclusions:

1. Subfilter scale vortex stretching and tilting is a significant contributor to the S
overall torque. The contributions of SFS vortex stretching and tilting and of SFS convec
of vorticity are poorly correlated and, consequently, may require different models.

2. The real subfilter scale torque is modeled using an eddy diffusivity term of the fc
V x (v1V x &). The results indicate that this model shows fair correlation with the S
torque due to vortex transport, but poor correlation with the SFS torque due to vortex stre
ing and tilting. Future extensions of the eddy diffusivity model (e.g., through similarity a
mixed models) to improve on this weakness are desirable.

3. The SFS model can be expressed as the sum of a gradient diffusion term &
generalized transport term, due to variable eddy viscosity. Results show that the gra
diffusion part of the model is roughly one order of magnitude larger than the remain
part.

4. From a practical point of view, our main conclusion is that the coefficient of t
eddy-viscosity model can be determined dynamically using filtering at two different sce
in the context of a Lagrangian vortex model. The computed values of the dynamic m
coefficient are consistent with those computed using resolved enstrophy balances.

Numerical experiments were also conducted to explore the implementation of the
namic SFS model in a discretization that mimics a three-dimensional vortex method.
simplified model and dynamic procedure are then recast in a Lagrangian formwhichis b
on a particle representation of the vorticity field. The values obtained from the particle
cretization are compared to spectral values. The comparison shows that when sulffi
resolution is provided the particle scheme yields reasonable predictions of both the
torques and the dynamic model constant.
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Results of thesa priori tests and previous experiences with vortex element computatio
are quite encouraging, despite the indicated weaknesses of the model. In [14] we
advantage of these results by applying the proposed dynamic LES scheme to a tt
dimensional vortex element-based LES of high-Reynolds-number shear flow.

APPENDIX A: THEORETICAL DETERMINATION OF MODEL CONSTANT
C; FOR ISOTROPIC TURBULENCE

The traditional approach of determining the Smagorinsky coefficigns based on a
balance between energy production and SGS dissipation [15]. Analogously, determina
of C; may proceed, based on balancing enstrophy production and dissipation for hol
geneous, isotropic turbulence. The scalar dot product efith Eq. (11) results in the
following equation of motion of the resolved enstrophy field:

9 /1 1 ~ 1
—(Z&% ) 4+0-V[Z0?) =00 :S+vV2 [ Z@% ) — vV VO +& - r+& -V x F.
at\ 2 2 2

(A.1)

Under the assumption of statistical homogeneity and stationarity, several terms averag
zero, leaving a balance of resolved enstrophy generation by vortex stretching and large-:
forcing and dissipation by molecular viscosity and the subfilter scale torque:

0=[(G&:S)+ (& -V x F)] —[(WV@ : VST) — (& -1)]. (A.2)

Assuming that filtering is done in the inertial range and that forcing occurs at integral len
scales only, scaling arguments show that

@V x FY(@&: S) ~ A2/e2, (A.3)
WhenA « ¢, we have
@V x F)< (@@ :S), (A.4)

and the forcing term may be safely neglected in the resolved enstrophy balance.
After replacing the subfilter torguewith the model (Eg. (15)), the resolved enstrophy
equation becomes

0= (@@ :S) — ((V+v7)V&: VO — ((VvT) - [V - (@D)]). (A.5)

Substituting forvt from Eq. (16) we have
~ o~ aw| aa)| 2 / 80)| 3a)|
(i Si) = <3X1 09X > oA < Zsmnsmna Xj 0X; >
d [ = 0 . .
+ CrZA2<3_Xj ( 28mnsmn> a_xi(wiwj)>, (A.6)

from whichC, may be determined.
Atlarge enough filter scale\(>> n, wheren is the Kolmogorov scale), viscous dissipation
is negligible compared to subgrid scale dissipation. Also, as discussed in Section 4,

(VIS - [V - @&)]) < (ISIIV& : V&), (A7)
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so that

O @i 00
(a)iijij)%(CrA)2<\/28mnSmna ' axl> (A.8)
l J

Next, assuming that the strain rate norm and the vorticity gradient norm are uncorrel

and that
<\/émnémn>w<émnémn>l/z, (A.9)

we obtain
~  ~ 0w 0w & & 1 0w; 00;
v/ 2SmrSmn— — Y ~ V2(SmnSmn) Y2 — — ). A.10
< mn mnaxj 8X]> \/_< mn mn> <8X] BXJ> ( )

Similar assumptions of lack of correlation and of commutability of averaging with taki
the square root were made by Lilly [15] and Scettial. [50]. Results in Section 4 show
that these assumptions are in fact reasonable.

Kinematic relations for isotropic, incompressible turbulence give

~ 35/ /90 \ 2
(@@ 5)) = _2<<al>:) > (A.11)
15/ /adi;\ 2
(SIJSIJ> 5 <(—aii> > (A.12)

Substituting Eq. (A.12) into Eqg. (A.10), and Egs. (A.10) and (A.11) into (A.8) results in

() ) e (2)) (2208 g

It follows that

(SiSij)
A2< me me>

0Xn 0Xn

(EE) e

is the skewness of the filtered velocity derivative. The energy spectra of homogene
isotropic turbulence provides the ratio of the norms of the filtered strain rate and filte
vorticity gradient,

C2x (A.14)

: 153/2|ss|

where

SiSi) 2[5 1GAKIPKPE (k) dk

A2(Somiom) — A22 [ |G A K)PKAE (k) dK’

(A.16)
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whereE (k) is the turbulence 3D energy spectrum a6d (k)|2 is the filter spectrum. Since
it is assumed that the filter cuts off somewhere within the inertial range, the Kolmogor
spectrumE (k) = Ce?3k~53 may be used. The filteG » (k) is taken to be the Fourier
transform of the third-order Gaussian core-smoothing function. Numerical integration gi

0Xn 0Xn

(Sij Sij )/A2< > = 0.06098 (A.17)
The skewnesSs can be measured by filtering experimental or DNS velocity signals. Whil
a dependence on filter size is typically observed [45], a representative vé&ye is0.4.
Using|S3| = 0.4 leads tdC; = 0.12, as mentioned in Section 2.
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